Forbidden induced subgraphs for star-free graphs

نویسندگان

  • Jun Fujisawa
  • Katsuhiro Ota
  • Kenta Ozeki
  • Gabriel Sueiro
چکیده

Let H be a family of connected graphs. A graph G is said to be H-free if G is H-free for every graph H in H. In [1] it was pointed that there is a family of connected graphs H not containing any induced subgraph of the claw having the property that the set of H-free connected graphs containing a claw is finite, provided also that those graphs have minimum degree at least two and maximum degree at least three. In the same work, it was also asked whether there are other families with the same property. In this paper we answer this question by solving a wider problem. We consider not only the claw-free graphs but the more general class of star-free graphs. Concretely, given t ≥ 3, we characterize all the graph families H such that every large enough H-free connected graph is K1,t-free. Additionally, for the case t = 3 we show the families that one gets when adding the condition |H| ≤ k for each positive integer k.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted Coloring Problems and Forbidden Induced Subgraphs

An acyclic coloring of a graph is a proper coloring such that any two color classes induce a forest. A star coloring of a graph is an acyclic coloring with the further restriction that the forest induced by any two color classes is a disjoint collection of stars. We consider the behavior of these problems when restricted to certain classes of graphs. In particular, we give characterizations of ...

متن کامل

On-Line 3-Chromatic Graphs I. Triangle-Free Graphs

This is the first half of a two-part paper devoted to on-line 3-colorable graphs. Here on-line 3-colorable triangle-free graphs are characterized by a finite list of forbidden induced subgraphs. The key role in our approach is played by the family of graphs which are both triangleand (2K2 + K1)-free. Characterization of this family is given by introducing a bipartite modular decomposition conce...

متن کامل

Partial Characterizations of Circular-Arc Graphs

A circular-arc graph is the intersection graph of a family of arcs on a circle. A characterization by forbidden induced subgraphs for this class of graphs is not known, and in this work we present a partial result in this direction. We characterize circular-arc graphs by a list of minimal forbidden induced subgraphs when the graph belongs to any of the following classes: P4-free graphs, paw-fre...

متن کامل

Forbidden subgraphs generating a finite set

For a set F of connected graphs, a graph G is said to be F-free if G does not contain any member of F as an induced subgraph. The members of F are referred to as forbidden subgraphs. When we study the relationship between forbidden subgraphs and a certain graph property, we often allow the existence of exceptional graphs as long as their number is finite. However, in this type of research, if t...

متن کامل

Partial characterizations of clique-perfect and coordinated graphs: superclasses of triangle-free graphs

A graph is clique-perfect if the cardinality of a maximum clique-independent set equals the cardinality of a minimum clique-transversal, for all its induced subgraphs. A graph G is coordinated if the chromatic number of the clique graph of H equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The...

متن کامل

Triangle-free strongly circular-perfect graphs

Zhu [15] introduced circular-perfect graphs as a superclass of the well-known perfect graphs and as an important χ-bound class of graphs with the smallest non-trivial χ-binding function χ(G) ≤ ω(G)+1. Perfect graphs have been recently characterized as those graphs without odd holes and odd antiholes as induced subgraphs [4]; in particular, perfect graphs are closed under complementation [7]. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011